
Project Components CyRide Visualization

Frontend:
1. Main Map Interface

i. Shows the main screen on the website, such as the bus
to select and the zooming.

ii. Buttons, Drop-down, smaller increment zoom option.
b. Task: Integrate Google Maps into the user interface and start

the display over the Iowa State Campus
c. Task: Ensure the user can zoom in/out and move the map

around
d. Task: Create a button to return the user to the starting point of

the map
2. Bus Location Visualization

i. Live bus location with a sketch of the bus moving
throughout the route.

ii. Some design tools for bus and image location updates.
iii. Visualize the pathing when the bus is in range of base

stations and when outside of range.
iv. Give estimates of when buses will be in the range of base

stations to connect to the wireless network.
b. Task: Have a bus icon appear on the map where their

coordinates are.
c. Task: Given an update of data, move the bus to the new

location in a smooth transition.
d. Task: If a UE has no connection, turn the path red else, if

connected, turn the path green.
e. Task: Display the estimate for when the bus will be back in

range based on data from Django.
3. Bus information

i. Upon selection by the user, display the bus’ name, route,
speed, heading, latitude, longitude, and Rx/Tx frequency
for the current bus.



ii. Also display the UE connection strength to the base
station, giving an estimate of the WiFi connection strength
at the bus’ location.

b. Task: When a click occurs on a bus, display the data about the
bus, including but not limited to name, route, speed, heading,
latitude, longitude, Rx/Tx frequency, and UE strength.

c. Task: Have a function to update the data given updates from
Django.

4. User Interface
i. User interaction

1. buttons, images, map drags, dropdowns, pop-ups,
forms building text

b. Task: Create the generic layout of the page with the header
and footer.

c. Task: Have a help button that links to a help page describing
the project and what data may mean.

d. Task: Have a menu to select what UE to track based on the
bus.

5. Data Integration from Backend
i. Use backend API to fetch the data needed to update bus

locations.
ii. Use data fetched to update the map interface

b. Task: Create a WebSocket connection to Django and parse the
data received.

c. Task: Call functions that update the UI to display all the
updated bus data.



Backend:
1. WebSocket creation

i. Manage the WebSocket for the frontend to fetch bus
location.

ii. requests/returns
b. Task: Create a WebSocket that allows connections to receive

updates on data for the buses.
c. Task: Format the data that will need to be sent in the

WebSocket and how it should be parsed.
2. Data processes and prediction (ML)

i. Uses real-time bus location and predicts the location of
the bus.

ii. logic for predicting bus location based on data available.
b. Task: When the UE has no connection, use GPS, and Google

Maps API to receive data about the bus and store that data in
the database.

c. Task: Create a Machine Learning model that uses the bus
location and pathing to predict the bus movement.

3. Connection to the UE service LibreNMS
i. This allows the backend to receive live update information

about the UE location and connection to base stations.
b. Task: Setup an API call for the LibreNMS service that receives

the necessary data for the UE’s. This data can include the
name, speed, heading, latitude, longitude, and Rx/Tx frequency

c. Task: Whenever data is received, it can be saved to the
database to be used by the machine learning model.

4. Manage Database
a. Task: Make efficient use of keys and tables to make sure that

query times are efficient.



Testing:
1. Frontend Testing

i. Create tests for the frontend that deal with the UI
and the data received to mitigate edge cases that
could cause errors.

b. Task: Use a test suite to test the UI components to make
sure that they load correctly and have the correct data
appear. This can also test edge cases to make sure that
data is formatted correctly based on what is given.

c. Task: Create tests to ensure data can be parsed and
errors are handled if any received data is malformed or
missing.

2. Backend Testing
i. Create tests for the backend to ensure data is

stored/used correctly and the API can calculate
correct predictions to a given degree.

b. Task: Use a test suite to make sure that connections to all
external APIs are setup correctly, connected, and receive
expected results.

c. Task: Create tests to ensure that malformed data is
handled correctly within the APIs and when stored in the
database.

Collaboration:
1. Communicate together

a. Primarily discord, as we are all comfortable with using it.
2. Gitlab

a. We will use GitLab for version control.
b. If anything bad happens, we can easily go back and use the

last version.
c. Agile development so that we can split into pairs to work on

different functional components.
d. Use issues and branches to develop components separately

from the main release branch.



Server:
1. Download necessary applications and dependencies

a. Task: Download MySQL and set up the database so that
applications can connect.

b. Task: Download Python and its dependencies for Django.
c. Task: Download Node.js and install React.

2. Setup CI/CD
a. Task: Create the CD for the server to deploy and start the

application on an update from GitLab
b. Task: Create CI branches for all tasks that get merged into the

main branch to be tested and deployed.


